NewAge Shader Language v0.5
Specification

Christopher Olsen
http://www.upl.cs.wisc.edu/ " colsen/
colsen@cs.wisc.edu

September 30th, 2004

CONTENTS

Contents

1 Introduction
1.1 Terminology
1.1.1 Shaders
1.1.2 Stages o oo
1.2 History of NASL

2 The NASL Language
2.1 Syntax
2.2 Shader Operations
2.2.1 alphaTest
2.2.2 blendFunc L
2.3 Stage Operations
2.3.1 combiner
2.3.2 texmap .. o. ... e
233 wrapMode Lo
2.3.4 filterMode

1 INTRODUCTION 2

1 Introduction

The NewAge Shader Language is a high level language that can be used with any
graphics API. T will assume the use of OpenGL throughout this specification.
NASL allows complex materials to be easily defined and loaded from shader
files external to an application.

1.1 Terminology
1.1.1 Shaders

A shader contains all textures, colors, operations, and tests for a particular
material. When a shader is “bound” these textures, operations, tests, etc. are
set in OpenGL. In short a shader is an encapsulation of the OpenGL textures
and state of a material. A shader contains only three things: A name, a list of
shader operations, and a list of stages.

1.1.2 Stages

Each stage in a shader corresponds to a texture stage on the graphics hardware.
It is a layer where various properties can be set. When the surface is rendered all
the layers are combined together to produce the final look of the material. The
number of possible stages per shader is dependant on the graphics hardware.
Here is a list of current hardware and it’s capabilities:

Geforce 1 or 2: 2 stages
Geforce 3 or 4: 4 stages
Geforce FX: 8 stages
radeon9800: 8 stages
Geforce 6800: 16 stages
Radeon X800: 16 stages

A multi-pass implementation for rendering shaders with more stages than the
graphics hardware can handle in one pass may be a part of a future version of
NASL.

1.2 History of NASL

NASL v0.1 (simply called shader) was first developed for a game engine called
Xerosis I was working on in my spare time. It was modelled after Quake 3
shader files. Eventually it got to a working state and was incorporated into Age,
a game engine I wrote as part of a group for a Games Technology course at the
University of Wisconsin. This version of NASL was quite crippled (little more
than two stages and tcmods) and horribly designed due to the time constraints
of the class, student life, and myriad other things to be done to finish the game
engine.

NASL v0.2 was a complete rewrite of NASL v0.1 and was part of a complete
rewrite of the Age engine, cleverly titled NewAge (hence, NewAge Shading
Language). With the benefit of a total rewrite NASL v0.2 was much better
designed and more powerful than it’s predecessor. Everything I wanted in a
shading language was there.

NASL v0.3 was a minor update to NASL v0.2. With NASL v0.3 texture and

2 THE NASL LANGUAGE 3

shader management were incorporated along with NASL into a convenient li-
brary that could be easily added to any OpenGL project instantly. Cg vertex
shaders were also added to the language.

NASL v0.4 is mostly a rewrite of the parsing code, using a more canonical way
of parsing the shader files, making it easier to add new operations to the NASL
language. NASL v0.4 also simplifies the language a bit, getting rid of redundant
keywords and OpenGL keywords in the language. Additions include the agen
operator, and support for setting the textures directory and default shader file
for NASL.

NASL v0.5 has completely dropped the texture and shader management in favor
of a more simplified definition language that can be used to create shaders in
any API.

2 The NASL Language

2.1 Syntax

Shaders are defined with the following syntax:

name

{

<shaderQOps>

{
<stagel properties>

}

{
<stage2 properties>

}

Nearly every operation in NASL is optional, IE they will use a defined default
if the operation is not used in the shader.

2.2 Shader Operations
2.2.1 alphaTest

Fragments that fail the alpha test are not rendered.
alphaTest <func> <refValue>
refValue is a value against which the fragment alpha value is tested

func is one of the following:
gt
gte
1t
lte

2 THE NASL LANGUAGE 4

eq
neq
never
always

default: alphaTest always 0.0

2.2.2 blendFunc

The blendFunc operation defines how this surface blends with the frame
buffer.

blendFunc <srcBlend> <dstBlend> <blendEquation>

where srcBlend and dstBlend can be any one of the following:
zero

one

src_alpha
one_minus_src_alpha
src_color
one_minus_src_color
dst_alpha
one_minus_dst_alpha
dst_color
one_minus_dst_color

...and the blendEquation can be:
add

subtract

revsubtract

default: blendFunc one zero add

2.3 Stage Operations
2.3.1 combiner

The combiner operation defines how this stage combines with the stage
below it.

combiner <replace | modulate | add | subtract | dot3>

default: combiner modulate

2.3.2 texmap

A 24 or 32 bit TGA file can be used as a stage texture.

texmap <textureName>

2.3.3 wrapMode

The wrap mode defines how a texture is rendered beyond the range
[0,1].

2 THE NASL LANGUAGE 5

wrapMode <clamp | repeat>

default: wrapMode repeat

2.3.4 filterMode

The filter mode defines how a texture is filtered, whether bilinear or
nearest neighbor.

filterMode <nearest | linear>

default: linear

